optical patterns controlled by computerized spatial light modulator

  • hayder naser Imam Al-Kadhum college
Keywords: Spatial Light Modulator (SLM), Liquid crystal (LC), Brightness, Contrast, diffraction patterns

Abstract

In this work, a contemporary optical system is designed using a technology of spatial light modulator (SLM). This system is depending on the ability of altering light beam into different optical patterns according to a signal feedback injected computationally to the SLM. The effects of control parameters on the SLM operation are studied such us brightness (B) which determines the constant DC voltage applied to SLM pixels, and contrast (C) determines the maximum AC voltage amount that can be applied to the SLM. The influences of the transmission linearity of image intensity are controlled by the gamma adjustment which can be used to align non linearity of image intensity. The grey scale is used to control and imagine which signals corresponding to grey levels and image location. The resolution and orientation of the obtained images are altered by the screen format to make optical experiments more satisfied, hence different ratios of amplitude and phase modulation can be understood.

Downloads

Download data is not yet available.

References

Nikolenko, V., Peterka, D. S., & Yuste, R. (2010). A portable laser photostimulation and imaging microscope. Journal of neural engineering, 7(4), 045001.‏

Nguyen, T. H., & Popescu, G. (2013). Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation. Biomedical optics express, 4(9), 1571-1583.‏

Goodman, J. W. (2005). Introduction to Fourier optics. Roberts and Company Publishers.‏

Egge, S. V., Welde, K., Oesterberg, U. L., Aksnes, A., Akram, N. M., Kartashov, V., & Tong, Z. (2011). Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study. Optical Engineering, 50(8), 083202.

Solodar, A., Klapp, I., & Abdulhalim, I. (2014). Annular liquid crystal spatial light modulator for beam shaping and extended depth of focus. Optics Communications, 323, 167-173.‏

Bondareva, A. P., Cheremkhin, P. A., Evtikhiev, N. N., Krasnov, V. V., Starikov, R. S., & Starikov, S. N. (2014). Measurement of characteristics and phase modulation accuracy increase of LC SLM" HoloEye PLUTO VIS". In Journal of Physics: Conference Series (Vol. 536, No. 1, p. 012011). IOP Publishing.‏

Farré, A., Shayegan, M., López-Quesada, C., Blab, G. A., Montes-Usategui, M., Forde, N. R., & Martín-Badosa, E. (2011). Positional stability of holographic optical traps. Optics express, 19(22), 21370-21384.‏

Jesacher, A., Schwaighofer, A., Fürhapter, S., Maurer, C., Bernet, S., & Ritsch-Marte, M. (2007). Wavefront correction of spatial light modulators using an optical vortex image. Optics express, 15(9), 5801-5808.‏

Hecht, M. L. (1978). Hecht. Michael L. MEASURES OF COMMUNICATION SATISFACTION, Human Communication Research, 4(4), 350.‏

Turunen, J., & Wyrowski, F. (1998). Diffractive optics for industrial and commercial applications. Wiley-VCH, 440.‏

Kress, B., & Meyrueis, P. (2000). Digital diffractive optics. John Wiley&Sons Ltd.‏

Morrison, R. L. (1992). Symmetries that simplify the design of spot array phase gratings. JOSA A, 9(3), 464-471.‏

Yamauchi, M. (2005). Jones-matrix models for twisted-nematic liquid-crystal devices. Applied optics, 44(21), 4484-4493.‏

Rickenstorff, C., & Ostrovsky, A. S. (2010). Measurement of the amplitude and phase modulation of a liquid crystal spatial light modulator. Superficies y vacío, 23, 36-39.‏
Published
2020-05-04
How to Cite
naser, hayder. (2020). optical patterns controlled by computerized spatial light modulator. Al-Qadisiyah Journal of Pure Science, 25(2), Phys.8-15. https://doi.org/10.29350/qjps.2020.25.2.1075
Section
Physics