Batch fermentation and Simultaneous Saccharification and Fermentation (SSF) processes by Meyerozyma Guilliermondii Strain F22 and Saccharomyces cerecvisae for xylitol and bioethanol co-production

Batch fermentation and Simultaneous Saccharification and Fermentation (SSF) for xylitol and bioethanol co-production

  • Dr.Fawzia Shalsh , Ministry Science and Technology, Iraq
  • Dhoha Kadeem Nagimm
  • Muhammad Abdul Alrheem
  • Saffa Abedul Alrheem
Keywords: Production, Bioethanol, xylitol, rice straw, bioreactor.

Abstract

Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproduct, biorefinery technologies have focused on process integration for the production of different valuable coproducts in order to reduce the overall processing cost. In this study, agricultural wastes from rice straw were used for the co-production of bioethanol and xylitol. Where bioethanol is produced from the cellulosic fraction and xylitol from the hemicellulose fraction after elimination of lignin using chemical pretreatments. The chemical treatment was carried out with diluted acid 2.5% at a 100 °C for 30 minutes , and then exposed the cellulosic fraction of the solid phase resulting from the chemical process to the enzymatic action of the fungus Trichoderma harzianum for releas sugars and fermented at a later stage using  Saccharomyces cerecvisae for bioethanol production in a simultaneous saccharification and fermentation process, The liquid phase hemicellulose fraction  was exposed to action of Meyerozyma guilliermondii strain F22 (Pichia guilliermondii) for xylitol production. Resulting was accomplished yielding maximum concentrations and product yield were 32.6 g/L 0.39g/g and 20.1 g/L, 0.44g/g for bioethanol and xylitol respectively of the total glucose and xylose available in rice straw, the co-production of xylitol with ethanol in an integrated biorefinery would create economic benefits making the overall lignocellulose-based process more cost effective

Downloads

Download data is not yet available.

References

1. Espinoza-Acosta, J. L. (2020). Biotechnological production of xylitol from agricultural waste//Producción biotecnológica de xilitol a partir de residuos agrícolas. Biotecnia, 22(1), 126-134. doi.org/10.18633/biotecnia.v22i1.1160
2. Shankar, K., Kulkarni, N. S., Sajjanshetty, R., Jayalakshmi, S. K., & Sreeramulu, K. (2020). Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Industrial Crops and Products, 155, 112809. doi.org/10.1016/j.indcrop.2020.112809
3. Ravella, S. R., Gallagher, J., Fish, S., and Prakasham, R. S. (2012). “Overview on commercial production of xylitol, economic analysis and market trends,” in D-xylitol, eds S. S. da Silva and A. K. Chandel (Berlin; Heidelberg: Springer-Verlag, 291–306. Google Scholar
4. Vandeska, Kuzmanova S, Jeffries TW (1995) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218
5. Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa A Jr, Felipe MGA (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53(1):53–59
6. Kim TB, Oh DK (2003) Xylitol production by Candida tropicalis in a chemically defined medium. Biotechnol Lett 25(24): 2085–2088
7. Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58(4):440–444
8. Rodrigues, R. C., Kenealy, W. R., & Jeffries, T. W. (2011). Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. Journal of industrial microbiology & biotechnology, 38(10), 1649-1655. doi.org/10.1007/s10295-011-0953-4
9. da Silveira, F. A., Fernandes, T. A. R., Bragança, C. R. S., Balbino, T. R., Diniz, R. H. S., Passos, F. M. L., & da Silveira, W. B. (2019). Isolation of xylose-assimilating yeasts and optimization of xylitol production by a new Meyerozyma guilliermondii strain. International Microbiology, 1-10. doi: 10.1016/j.jbiosc.2009.07.013
10. Atzmüller, D., Ullmann, N., & Zwirzitz, A. (2020). Identification of genes involved in xylose metabolism of Meyerozyma guilliermondii and their genetic engineering for increased xylitol production. AMB Express, 10, 1-11.
11. Yan, W., Gao, H., Qian, X., Jiang, Y., Zhou, J., Dong, W., ... & Jiang, M. (2020). Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnology Advances, 107674.doi.org/10.1002/bbb.2196
12. Salli, K., Lehtinen, M. J., Tiihonen, K., & Ouwehand, A. C. (2019). Xylitol’s health benefits beyond dental health: a comprehensive review. Nutrients, 11(8), 1813. doi.org/10.3390/nu11081813
13. Mardawati, E., Maharani, N., Wira, D. W., Harahap, B. M., Yuliana, T., & Sukarminah, E. (2020). Xylitol Production from Oil Palm Empty Fruit Bunches (OPEFB) Via Simultaneous Enzymatic Hydrolysis and Fermentation Process. Journal of Industrial and Information Technology in Agriculture, 2(1). doi.org/10.24198/jiita.v2i1.25064
14. Research & Market. Xylitol- a global market overview. The report reviews, analyzes and projects: the global market for Xylitol for the period 2014-2022.” www.grandviewresearch.com/industryanalysis/xylitol-market).
15. Arcano YD, Valma ˜ na Garc ˜ ´ıa OD, Mandelli D,Carvalho WA, Magalhaes Pontes LA, Xylitol: A Review on the Progress ˜and Challenges of its Production by Chemical Route, Catalysis Today (2018), doi.org/10.1016/j.cattod.2018.07.060
16. Subroto, E., & Hayati, F. (2020). Chemical and biotechnological methods for the production of xylitol: a review. Int J, 8(6). Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter49862020.pdf
17. Vallejos, M.E.; Chade, M.; Mereles, E.B.; Bengoechea, D.I.; Brizuela, J.G.; Felissia, F.E.; Area, M.C. Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind. Crop. Prod. 2016, 91, 161–169. [CrossRef]
18. Damião Xavier, F., Santos Bezerra, G., Florentino Melo Santos, S., Sousa Conrado Oliveira, L., Luiz Honorato Silva, F., Joice Oliveira Silva, A., & Maria Conceição, M. (2018). Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomolecules, 8(1), 2 doi.org/10.3390/biom8010002
19. Hargono, H., Jos, B., Purwanto, P., Sumardiono, S., & Zakaria, M. F. (2021, February). A Comparison of the Bioethanol Production from Suweg (Amorphophallus campanulatus) through Separate Hydrolysis and Fermentation as well as Simultaneous Saccharification and Fermentation Using Saccharomyces cerevisiae. In IOP Conference Series: Materials Science and Engineering .1053(1) p. 012036. IOP Conference Series: Materials Science and Engineering, Volume 1053, International Conference on Chemical and Material Engineering (ICCME 2020) 6th-7th October 2020, Semarang, Indonesia
20. Shawky, B. T., Talaat, N. B., & Mohapatra, S. (2021). Enzymes in Fuel Biotechnology. In Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment (pp. 201-217). Springer, Singapore. Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment pp 201-217| doi.org/10.1007/978-981-33-4195-1_10
21. Koppram, R., & Olsson, L. (2014). Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnology for biofuels, 7(1), 1-9.
22. Unrean, P., & Ketsub, N. (2018). Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial crops and products, 123, 238-246. doi.org/10.1016/j.indcrop.2018.06.071
23. Valles, A., Álvarez-Hornos, F. J., Martínez-Soria, V., Marzal, P., & Gabaldón, C. (2020). Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw. Fuel, 282, 118831.
24. Sarkar N, Aikat K. Kinetic study of acid hydrolysis of rice straw. ISRN Biotechnol 2013. doi.org/10.5402/2013/170615
25. Mariana A.G Tiburcio1and Inês C. Roberto. 2019 Xylitol production from rice Straw hemicellulosic hydrolysate using cells of Candida guilliermondii permeabilized with Triton X-100. CE12. The 12th European Congress of Chemical Enginering Florence 15-19 September 2019
26. Shalsh, F. J., Ibrahim, N. A., Arifullah, M., & Hussin, A. S. B. M. (2018). Molecular Genetic Characterization of Fusants from Protoplast Fusion of S. Cerevisiae and P. Stipitis ATCC 58785. Biomedical Journal of Scientific & Technical Research, 12(3), 9335-9342. doi: 10.26717/BJSTR.2019.12.002272
27. Fawzia Jassim Shalsh, Noor Azlina Binti Ibrahim, Mohammed Arifullah, &Anis Shobirin Binti Mero Hussin. Evaluation bioethanol production from fusant of S. cerevisiae and P. stipitis. Asia-Pacific power and Energy Engineering conference (APPEEC)-19-21 April-Xiamen –China. In book Emerging Developments in the Power and Energy Industry – Dufo-López, Krzywanski & Singh (eds)© 2019 Taylor & Francis Group, London, ISBN 978-0-367-27169-5.
28. Perkins, D. D. How to choose and prepare media Perkins.2006.
29. Vogel, H.A. A convenient growth medium for Neurospora crassa. Genet. Bull., 13: 42-43, 1956
30. Sluiter, Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Nrel, D.C., 2012. Determination of Structural Carbohydrates and Lignin in Biomass Determination of Structural Carbohydrates and Lignin in Biomass. Laboratoty Analytical Procedures (LAP). National Renewable Energy Laboratory (NREL) 2012; Golden, CO Revised version Jul.
31. Ramesh, S., Muthuvelayudham, R., Kannan, R. R., & Viruthagiri, T. (2021). Statistical optimization of medium composition and process variables for xylitol production from rice straw hemicellulose hydrolysate by debaryomyces hansenii var hansenii. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 2332-2339.
32. Qiu, Aita, G.M., Walker, M.S., 2012. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256. doi.org/10.1016/j.biortech.2012.04.070.
33. Thontowi, A., Mayangsari, W., Kholida, L. N., Kanti, A., Wardani, A. K., & Hermiati, E. (2020, February). Evaluation of Addition The Activated Charcoals and pH Adjustment in The Treatment of Lignocellulosic Hydrolisates for Xylitol Production. In IOP Conference Series: Earth and Environmental Science (Vol. 439, No. 1, p. 012023). IOP Publishing. doi:10.1088/1755-1315/439/1/012023
34. Mussatto, S.I., D. Giuliano and I.C.R. Dragone. 2005. Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochemistry 40: 3801–3806.
35. Irfan, M., Gulsher, M., Abbas, S., Syed, Q., Nadeem, M., & Baig, S. (2011). Effect of various pretreatment conditions on enzymatic saccharification. Songklanakarin Journal of Science & Technology, 33, 397e404.
36. Bailey, M. J. Biely P. Pountanen, K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23, 1992, 257-270
37. Baptista SL, Cunha JT, Romaní A, Domingues L Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2.Bioresour Technol. 2018 Nov;267:481-491. doi.org/10.1016/j.biortech.2018.07.068
38. Swain, M. R., & Krishnan, C. (2015). Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis. Industrial Crops and Products, 77, 1039-1046
39. Amerine MA, Ough CS. Wine and must analysis. New York, USA: Wiley; 1984.
40. Ahsen, M. A., Naqvi, S. A., Jaskani, M. J., Waseem, M., Khan, I. A., Hussnain, K., Mahmood, K., & Khan, M. M. (2019). Evaluation of exotic citrus rootstocks against Fusarium spp. Journal of Global Innovations in Agricultural and Social Sciences, 7(4), 151–156. doi.org/10.22194/JGIASS/7.874.
41. Kim, S. (2019). Xylitol production from byproducts generated during sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber by an adapted Candida tropicalis. Frontiers in Energy Research, 7, 72. doi.org/10.3389/fenrg.2019.00072
42. Prabhu, A.A., Bosakornranut, E., Amraoui, Y. et al. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotechnol Biofuels 13, 209 (2020). doi.org/10.1186/s13068-020-01845-2
43. Kumar, A., Jain, K. K., & Singh, B. (2020). Process optimization for chemical pretreatment of rice straw for bioethanol production. Renewable Energy, 156, 1233-1243. doi10.1016/j.renene.2020.04.052
44. Mpabanga, T. P., Chandel, A. K., da Silva, S. S., and Singh, O. V. (2012). “Detoxification strategies applied to lignocellulosic hydrolysates for improved xylitol production,” in D-xylitol, eds S. S. da Silva and A. K. Chandel (Berlin; Heidelberg: Springer-Verlag), 63–82
45. Dasgupta, D., Junghare, V., Nautiyal, A. K., Jana, A., Hazra, S., & Ghosh, D. (2019). Xylitol production from lignocellulosic pentosans: a rational strain engineering approach toward a multiproduct biorefinery. Journal of agricultural and food chemistry, 67(4), 1173-1186. https://doi.org/10.1021/acs.jafc.8b05509
46. Sievert C, Nieves LM, Panyon LA, Loefer T, Morris C, Cartwright RA, et al. Experimental evolution reveals an efective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci USA. 2017; 114:7349–54. doi.org/10.1073/pnas.1700345114
47. Walther. T., P. Hensirisak and F.A. Agblevor. 2001. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresource Technology 76: 213-220.
48. Clara Vida G. C., et al., 2019. Xylitol Production: Identification and Comparison of New Producing Yeasts. Microorganisms. 7(11), 484.
49. Zahed, O., Jouzani, G.S., Abbasalizadeh, S., Khodaiyan, F., Tabatabaei, M., 2016. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol. (Praha) 61 (3), 179–189. P. Unrean, N. Ketsub Industrial Crops & Products 123 (2018) 238–246.
50. Santos D.T., Sarrouh B.F., Rivaldi J.D., Converti A.,Silva S.S., Use of Sugarcane bagasse as biomaterialfor cell immobilization for xylitol production,J. Food Eng., 86, p. 542 (2008).
51. Chang, Z., Liu, D., Yang, Z., Wu, J., Zhuang, W., Niu, H., & Ying, H. (2018). Efficient xylitol production from cornstalk hydrolysate using engineered Escherichia coli whole cells. Journal of agricultural and food chemistry, 66(50), 13209-13216. doi.org /10.1021 /acs.jafc.8b04666
52. Mattam, A.J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P.V., Velankar, H.R., 2016. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnol Biofuels. 26 (9), 157.
53. Jin, Y. S., Cruz, J., & Jeffries, T. W. (2005). Xylitol production by a Pichia stipitis D-xylulokinase mutant. Applied microbiology and biotechnology, 68(1), 42-45
54. Mussatto, S. I., Santos, J. C., Ricardo Filho, W. C., & Silva, S. S. (2005). Purification of xylitol from fermented hemicellulosic hydrolyzate using liquid–liquid extraction and precipitation techniques. Biotechnology letters, 27(15), 1113-1115.
55. Mesa L, González E, Romero I, Ruiz E, Cara C, Castro C (2011) Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chem Eng J 175:185–191. doi:10.1016/j.cej.2011.09.092
56. Prasad, S., Kumar, S., Yadav, K. K., Choudhry, J., Kamyab, H., Bach, Q. V., Gupta, N. (2020). Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy, 190 116422.. doi.org/ 10.1016/j .energy.2019.116422
57. Meng, Q. S., Zhang, F., Liu, C. G., Bai, F. W., Zhao, X. Q. (2021). Measurement of Cellulase and Xylanase Activities in Trichoderma reesei. In Trichoderma reesei (pp. 135-146). Humana, New York, NY.
58. Soni, M., Mathur, C., Soni, A., Solanki, M. K., Kashyap, B. K., & Kamboj, D. V. (2021). Xylanase in Waste Management and Its Industrial Applications. Waste to Energy: Prospects and Applications, 393.
59. Singh, B., & Kumar, A. (2020). Process development for sodium carbonate pretreatment and enzymatic saccharification of rice straw for bioethanol production. Biomass and Bioenergy, 138, 105574. doi.org/10.1016/j.biombioe.2020.105574
60. Linares, J.C.L.; Romero, I.; Cara, C.; Castroa, E.; Mussatto, E.I. Xylitol production by Debaryomyceshansenii and Candida guilliermondii from rapeseed straw hemicellulosichydrolysate. Bioresour. Technol. 2018, 247, 736–743. doi.org/10.1016/j.biortech.2017.09.139
Published
2021-07-17
How to Cite
Shalsh, D., Dhoha Kadeem Nagimm, Muhammad Abdul Alrheem, & Saffa Abedul Alrheem. (2021). Batch fermentation and Simultaneous Saccharification and Fermentation (SSF) processes by Meyerozyma Guilliermondii Strain F22 and Saccharomyces cerecvisae for xylitol and bioethanol co-production. Al-Qadisiyah Journal of Pure Science, 26(4), 80–94. https://doi.org/10.29350/qjps.2021.26.4.1347
Section
Special Issue (Silver Jubilee)

Most read articles by the same author(s)