Synthesis, and studying effect of a solvent on the 1H-NMR chemical shifts of 4-Azido-N-(6-chloro-3-pyridazinyl)benzenesulfonamide

  • sadiq Hasan University of Basrah
Keywords: Polarity, azido, 1H-NMR, dielectric constants, correlation coefficient

Abstract

  The compound 4-Azido-N-(6-chloro-3-pyridazinyl)benzenesulfonamide was synthesized and studied using FTIR, and 1H-NMR . The influence of a solvent on the experimental 1H-NMR chemical shifts of title compound is discussed. Small chemical shift Δδ < 0.1 ppm were observed when switching from DMSO-d6 to CD3OD. Record a marked change in chemical shifts valeues Δδ > 0.3 ppm when transform from high-polar solvents (DMSO-d6,and CD3OD)  to low-polar solvent (CDCl3). The 1H-NMR chemical shifts of C2-H and C6-H were shown to have excellent linear correlation with the dielectric constants of the solvents DMSO-d6, CD3OD,and CDCl3 (r = 0.995). The 1H-NMR chemical shifts of C18-H shows a perfect relationship with solvatochromic parameter β (r = 0.999).

Downloads

Download data is not yet available.

References

1. Li J, Liu M-K, Li Q-S, Li Z-S. Theoretical study on the photochemistry of furoylazides: Curtius rearrangement and subsequent reactions. Physical Chemistry Chemical Physics. 2020;22(48):28317-24.
2. Nouri A, Zahedi E, Ehsani M, Nouri A, Balali E. Understanding the kinetics and molecular mechanism of the Curtius rearrangement of 3-oxocyclobutane-1-carbonyl azide. Computational and Theoretical Chemistry. 2018;1130:121-9.
3. Lao Z, Toy PH. Catalytic Wittig and aza-Wittig reactions. Beilstein journal of organic chemistry. 2016;12(1):2577-87.
4. Palacios F, Aparicio D, Rubiales G, Alonso C, de los Santos JM. Synthetic applications of intramolecular aza-Wittig reaction for the preparation of heterocyclic compounds. Current Organic Chemistry. 2009;13(8):810-28.
5. Lenstra DC, Lenting PE, Mecinović J. Sustainable organophosphorus-catalysed Staudinger reduction. Green Chemistry. 2018;20(19):4418-22.
6. Lenstra DC, Wolf JJ, Mecinovic J. Catalytic Staudinger Reduction at Room Temperature. The Journal of organic chemistry. 2019;84(10):6536-45.
7. Israr M, Ye C, Muhammad MT, Li Y, Bao H. Copper (I)-catalyzed tandem reaction: synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes. Beilstein journal of organic chemistry. 2018;14(1):2916-22.
8. Almashal FAK, Al-Hujaj HH, Jassem AM, Al-Masoudi NA. A Click Synthesis, Molecular Docking, Cytotoxicity on Breast Cancer (MDA-MB 231) and Anti-HIV Activities of New 1, 4-Disubstituted-1, 2, 3-Triazole Thymine Derivatives. Russian Journal of Bioorganic Chemistry. 2020;46(3):360-70.
9. Sarvary A, Maleki A. A review of syntheses of 1, 5-disubstituted tetrazole derivatives. Molecular Diversity. 2015;19(1):189-212.
10. Tanimoto H, Kakiuchi K. Recent applications and developments of organic azides in total synthesis of natural products. Natural product communications. 2013;8(7):1934578X1300800730.
11. Schock M, Bräse S. Reactive & Efficient: Organic Azides as Cross-Linkers in Material Sciences. Molecules. 2020;25(4):1009.
12. Leyva E, Aguilar J, González‐Balderas RM, Vega‐Rodríguez S, Loredo‐Carrillo SE. Synthesis of nitrophenyl and fluorophenyl azides and diazides by SNAr under phase‐transfer or microwave irradiation: Fast and mild methodologies to prepare photoaffinity labeling, crosslinking, and click chemistry reagents. Journal of Physical Organic Chemistry. 2020:e4171.
13. Leyva E, Leyva S, Moctezuma E, González-Balderas RM, de Loera D. Microwave-assisted synthesis of substituted fluorophenyl mono-and diazides by SNAr. A fast methodology to prepare photoaffinity labeling and crosslinking reagents. Journal of Fluorine Chemistry. 2013;156:164-9.
14. Bräse S, Banert K. Organic azides. Synthesis and Applications. 2010.
15. Pill T, Polborn K, Kleinschmidt A, Erfle V, Breu W, Wagner H, et al. Metallkomplexe mit biologisch wichtigen Liganden, LX. Metallkomplexe von 3′‐Azido‐3′‐desoxythymidin (AZT) und 3′‐Isocyan‐3′‐desoxythymidin. Chemische Berichte. 1991;124(7):1541-8.
16. Teimouri A, Chermahini AN, Emami M. Synthesis, spectroscopic characterization and DFT calculations on [4-(sulfonylazide) phenyl]-1-azide. Arkivoc. 2008;12:172-87.
17. Jiang J, Zhu P, Li D, Chen Y, Li M, Wang X, et al. High-pressure studies of 4-acetamidobenzenesulfonyl azide: combined Raman scattering, IR absorption, and synchrotron X-ray diffraction measurements. The Journal of Physical Chemistry B. 2016;120(46):12015-22.
18. Deng G, Dong X, Liu Q, Li D, Li H, Sun Q, et al. The decomposition of benzenesulfonyl azide: a matrix isolation and computational study. Physical Chemistry Chemical Physics. 2017;19(5):3792-9.
19. Abraham RJ, Mobli M. An NMR, IR and theoretical investigation of 1H Chemical Shifts and hydrogen bonding in phenols. Magnetic Resonance in Chemistry. 2007;45(10):865-77.
20. Abraham RJ, Mobli M, Smith RJ. 1H chemical shifts in NMR: Part 19. Carbonyl anisotropies and steric effects in aromatic aldehydes and ketones. Magnetic Resonance in Chemistry. 2003;41(1):26-36.
21. Valentić NV, Ušćumlić GS. Effects of substituents on the 1H-NMR chemical shifts of 3-methylene-2-substituted-1, 4-pentadienes. Journal of the Serbian Chemical Society. 2003;68(7):525-34.
22. Terekhov DS, Nolan KJ, McArthur CR, Leznoff CC. Synthesis of 2, 3, 9, 10, 16, 17, 23, 24-octaalkynylphthalocyanines and the effects of concentration and temperature on their 1H NMR spectra. The Journal of organic chemistry. 1996;61(9):3034-40.
23. Pauli GF, Kuczkowiak U, Nahrstedt A. Solvent effects in the structure dereplication of caffeoyl quinic acids. Magnetic Resonance in Chemistry. 1999;37(11):827-36.
24. Zarchi MAK, Ebrahimi N. Facile and one-pot synthesis of aryl azides via diazotization of aromatic amine using cross-linked poly (4-vinylpyridine)-supported nitrite ion and azidation by a Sandmeyer-type reaction. Iranian Polymer Journal. 2012;21(9):591-9.
25. Martucci A, Cremonini MA, Blasioli S, Gigli L, Gatti G, Marchese L, et al. Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous and Mesoporous Materials. 2013;170:274-86.
26. Abraham RJ, Byrne JJ, Griffiths L, Perez M. 1H chemical shifts in NMR: Part 23, the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts. Magnetic Resonance in Chemistry. 2006;44(5):491-509.
27. Mari SH, Varras PC, Choudhary IM, Siskos MG, Gerothanassis IP. Solvent-dependent structures of natural products based on the combined use of DFT calculations and 1H-NMR chemical shifts. Molecules. 2019;24(12):2290.
28. Hashimoto M, Sakata K. Solvent effects on proton Nmr chemical shifts of macrocyclic and nonmacrocyclic compounds employed with NH functional group. Analytical sciences. 1995;11(4):631-635.
29. Dean JA. Lange’s Handbook of Chemistry, McGrawHill Book Co. Inc, New York. 1999.
30. Reichardt C, Welton T. Solvents and solvent effects in organic chemistry: John Wiley & Sons; 2011.
31. Catalán J. Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. The Journal of Physical Chemistry B. 2009;113(17):5951-60.
32. Catalán J, López V, Pérez P, Martin‐Villamil R, Rodríguez JG. Progress towards a generalized solvent polarity scale: The solvatochromism of 2‐(dimethylamino)‐7‐nitrofluorene and its homomorph 2‐fluoro‐7‐nitrofluorene. Liebigs Annalen. 1995;1995(2):241-52.
33. Catalán J, Gómez J, Saiz JL, Couto A, Ferraris M, Laynez J. Calorimetric quantification of the hydrogen-bond acidity of solvents and its relationship with solvent polarity. Journal of the Chemical Society, Perkin Transactions 2. 1995(12):2301-5.
34. Mayer U, Gutmann V, Gerger W. The acceptor number—A quantitative empirical parameter for the electrophilic properties of solvents. Monatshefte für Chemie/Chemical Monthly. 1975;106(6):1235-57.
Published
2021-08-06
How to Cite
Hasan, sadiq. (2021). Synthesis, and studying effect of a solvent on the 1H-NMR chemical shifts of 4-Azido-N-(6-chloro-3-pyridazinyl)benzenesulfonamide. Al-Qadisiyah Journal of Pure Science, 26(3), 1-11. https://doi.org/10.29350/qjps.2021.26.3.1429
Section
Chemistry